If it's not what You are looking for type in the equation solver your own equation and let us solve it.
720=4t^2
We move all terms to the left:
720-(4t^2)=0
a = -4; b = 0; c = +720;
Δ = b2-4ac
Δ = 02-4·(-4)·720
Δ = 11520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11520}=\sqrt{2304*5}=\sqrt{2304}*\sqrt{5}=48\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-48\sqrt{5}}{2*-4}=\frac{0-48\sqrt{5}}{-8} =-\frac{48\sqrt{5}}{-8} =-\frac{6\sqrt{5}}{-1} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+48\sqrt{5}}{2*-4}=\frac{0+48\sqrt{5}}{-8} =\frac{48\sqrt{5}}{-8} =\frac{6\sqrt{5}}{-1} $
| 3x^2+48-108=0 | | 5-3x+6=-7x+11+4x | | 3(180-x-90-x)=2(180-(90-2x)) | | 2(x-4)=3+7 | | 4x-2=2x+6+2x | | 1.90x+19=11.20x+2.50 | | –3(u−66)=–3 | | 6-2x-3=3x-17 | | 3x+8=-(14+5) | | y=0.0011+17 | | 2=w/46 | | 4(x-3)=2(3x+1)= | | (2x-3)3x-19=27 | | 2x-33x-19=27 | | 12m+12=7m-18 | | 2x-3=3x-19=27 | | 12m+12=7m-8 | | 2x+3=130 | | 6x=5x+1. | | 4m-2=2m+20 | | 3y−20=8y | | 17x-18=42 | | -9v=-54 | | 2-b=3/4 | | (10x+-4)/5=20 | | 2x+5x−20−4x=2x2+2x | | 2x2+5x−20−4x=2x2+2x | | 3x+15=12x-12 | | x+1/4=27/44 | | 2(x–10)+4=–6x+2 | | 111/30=7-6+x | | -1+2n=9(n-4) |